Sample Question Paper - 6 Mathematics-Basic (241)

Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours Maximum Marks: 40

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.

Section A

1. Find the equations have real roots. If real roots exist, find them: $-2x^2 + 3x + 2 = 0$

[2]

OR

Find the value of k for which the given value is a solution of the given equation $7x^2 + kx - 3 = 0$; $x = \frac{2}{3}$

- 2. A 20 m deep well with diameter 7m is dug and the earth from digging is evenly spread out to **[2]** form a platform 22 m by 14 m. Find the height of the platform.
- 3. The following data gives the information on the observed lifetimes (in hours) of 225 electrical [2] components:

Lifetimes (in hours)	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

4. Find the value of x for which (8x + 4), (6x - 2) and (2x + 7) are in A.P.

[2] [2]

Marks	Number of Students	c.f.	
0 - 10	5	5	
10 - 30	15	F	
30 - 60	f	50	
60 - 80	8	58	
80 - 90	2	60	
	N = 60	$N = \sum f_i = 60$	

Find f and F.

5.

6. Two concentric circles are of radii 6.5 cm and 2.5 cm. Find the length of the chord of the larger [2] circle which touches the smaller circle.

OR

A circle is touching the side BC of $\triangle ABC$ at P and touching AB and AC produced at Q and R respectively. Prove that $AQ = \frac{1}{2}$ (perimeter of $\triangle ABC$).

Section B

- 7. If $(m + 1)^{th}$ term of an A.P. is twice the $(n + 1)^{th}$ term, prove that $(3m + 1)^{th}$ term is twice the $(m + 1)^{th}$ term.
- 8. The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight of 30 [3] seconds, the angle of elevation changes to 30°. If the plane is flying at a constant height of 3600 $\sqrt{3}m$, find the speed in km/hr of the plane.

OR

A tower subtends an angle α at a point A in the plane of its base and the angle of depression of the foot of the tower at a point b metres just above A is β . Prove that the height of tower is b tan α cot β .

- 9. From an external point P, a tangent PT and a line segment PAB is drawn to a circle with centre [3] O. ON is perpendicular on the chord AB. Prove that.
 - i. $PA.PB = PN^2 AN^2$
 - ii. $PN^2 AN^2 = OP^2 OT^2$
 - iii. $PA.PB = PT^2$

10. Solve:
$$\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}, x \neq \frac{4}{3}$$

Section C

11. Draw a line segment AB of length 6.5 cm and divide it in the ratio 4:7. Measure each of the two [4] parts.

OR

Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

12. The median of the following data is 52.5. Find the values of x and y, if the total frequency is [4] 100.

C.I.	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	2	5	Х	12	17	20	у	9	7	4

13. Vijay lives in a flat in a multi-story building. Initially, his driving was rough so his father keeps [4] eye on his driving. Once he drives from his house to Faridabad. His father was standing on the top of the building at point A as shown in the figure. At point C, the angle of depression of a car from the building was 60°. After accelerating 20 m from point C, Vijay stops at point D to

buy ice-cream and the angle of depression changed to 30°.

By analysing the above given situation answer the following questions:

- i. Find the value of x.
- ii. Find the height of the building AB.
- 14. Seema a class 10th student went to a chemist shop to purchase some medicine for her mother [4] who was suffering from Dengue. After purchasing the medicine she found that the upcount capsule used to cure platelets has the dimensions as followed:

The shape of the upcount capsule was a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm.

By reading the above-given information, find the following:

- i. The surface area of the cylinder.
- ii. The surface area of the capsule.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

Section A

1. For real roots of quadratic equation, $b^2 - 4ac > 0$

We have,
$$-2x^2 + 3x + 2 = 0$$

Now,
$$b^2 - 4ac > 0$$

$$\Rightarrow$$
 (3)² - 4(-2)(2)>0 (::a = -2, b = 3, c = 2)

$$\Rightarrow 25 > 0$$

Now,
$$\sqrt{D}=5$$

Now,
$$\sqrt{D}=5$$

And, $x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-3\pm5}{2(-2)}=\frac{-3\pm5}{-4}$
 $\Rightarrow x=\frac{-3+5}{-4}$ and $x=\frac{-3-5}{-4}$
 $\Rightarrow x=\frac{2}{-4}$ and $x=\frac{-8}{-4}$
 $\Rightarrow x=\frac{-1}{2}$ and 2

$$\Rightarrow x = rac{-3+5}{-4}$$
 and $x = rac{-3-5}{-4}$

$$\Rightarrow x = rac{2}{-4}$$
 and $x = rac{-8}{-4}$

$$\Rightarrow x = rac{-1}{2}$$
 and 2

Therefore, the roots of the given equation are 2 and $\frac{-1}{2}$.

We have,
$$7x^2 + kx - 3 = 0$$

Since $x = \frac{2}{3}$ is the solution of the given equation

$$\therefore x = \frac{2}{3}$$
 satisfies the given equation

$$7(\frac{2}{3})^2 + k(\frac{2}{3}) - 3 = 0$$

$$\implies \frac{28}{9} + \frac{2k}{3} - 3 = 0$$

$$\implies \frac{1}{9} + \frac{2k}{3} = 0$$

$$7(\frac{2}{3})^2 + k(\frac{2}{3}) - 3 = 0$$

$$\Rightarrow \frac{28}{9} + \frac{2k}{3} - 3 = 0$$

$$\Rightarrow \frac{1}{9} + \frac{2k}{3} = 0$$

$$\Rightarrow \frac{2k}{3} = -\frac{1}{9} \implies k = -\frac{3}{18}$$

$$\Rightarrow k = -\frac{1}{6}$$

$$\implies k = -rac{1}{6}$$

2. For well Diameter = 7 m

$$\therefore$$
 Radius (r) = $\frac{7}{2}$ m

Depth (h) =
$$20 \text{ m}$$

$$\therefore$$
 Volume = $\pi r^2 h = \pi \left(\frac{7}{2}\right)^2 (20)$

$$= 245\pi {\rm cm}^3$$

For platform Length (L) = 22 m

Let the height of the platform be Hm.

Then, volume of the platform

$$L=LBH=22 imes14 imes H=308{
m Hm}^3$$

According to the question,

$$308H = 245\pi$$

$$\Rightarrow H = \frac{245\pi}{308} \Rightarrow H = \frac{245\times22}{308\times7} \Rightarrow H = 2.5$$

Hence, the height of the platform is 2.5 m.

3. Here, the maximum class frequency is 61, and the class corresponding to this frequency is 60-80. So, the modal class is 60-80.

Therefore h = 20, l = 60, $f_1 = 61$, $f_0 = 52$, $f_2 = 38$

$$Mode = \ l \ + \left[rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight] imes h = \ 60 + \left[rac{61 - 52}{2(61) - \ 52 - 38}
ight] imes 20 = \ 60 + \left[rac{9}{122 - 90}
ight] imes 20 = 60 + rac{180}{32} = 60 \ + \ 5.625 = 65.625$$

Therefore, the modal lifetime of the components is 65.625 hours.

4. Here we are given that 8x+4,6x-2 and 2x+7 are in AP

Here

$$a_1 = 8x + 4, a_2 = 6x-2 \text{ and } a_3 = 2x+7$$

Then common difference $d = a_2 - a_1 = a_3 - a_2$

$$\Rightarrow$$
(6x - 2) - (8x + 4) = (2x + 7) - (6x - 2)

$$\Rightarrow$$
6x - 2 - 8x - 4 = 2x + 7 - 6x + 2

$$\Rightarrow$$
-2x - 6 = -4x + 9

$$\Rightarrow$$
-2x + 4x = 9 + 6

$$\Rightarrow$$
2x = 15

$$\Rightarrow x = \frac{15}{2}$$

5.	Marks	Number of Students	c.f.		
	0 - 10	5	5		
	10 - 30	15	15+5=20=F		
	30 - 60	50 - 20 = 30 = f	50		
	60 - 80	8	58		
	80 - 90	2	60		
		N = 60	$N = \sum f_i = 60$		

$$\overline{f=30}\ and\ F=20$$

We know that the radius and tangent are perpendicular at their point of contact

In right Triangle AOP

$$AO^2 = OP^2 + PA^2$$

$$\Rightarrow$$
 (6.5)² = (2.5)² + PA²

$$\Rightarrow$$
 PA² = 36

$$\Rightarrow$$
 PA = 6cm

Since, the perpendicular drawn from the center bisects the chord.

PA = PB = 6cm

Now,
$$AB = AP = PB = 6 + 6 = 12cm$$

Hence, the length of the chord of the larger circle is 12 cm.

OR

We know that the lengths of tangents drawn from an external point to a circle are equal.

AQ = AR, ...(i) [tangents from A]

BP = BQ ...(ii) [tangents from B]

CP = CR ... (iii) [tangents from C]

Perimeter of $\triangle ABC$

$$= AB + BC + AC$$

$$= AB + BP + CP + AC$$

$$= AQ + AR$$

$$\therefore$$
 $AQ = \frac{1}{2}$ (perimeter of $\triangle ABC$)

Section B

7. Given,

$$a_{m+1} = 2a_{n+1}$$

$$\Rightarrow$$
 a + (m + 1 - 1)d = 2[a + (n + 1 - 1)d]

$$\Rightarrow$$
 a + md = 2[a + nd]

$$\Rightarrow$$
 a + md = 2a + 2nd

$$\Rightarrow$$
 md - 2nd = 2a - a

$$\Rightarrow$$
 md - 2nd = a(i)

To prove:

$$a_{3m+1} = 2a_{m+n+1}$$

Proof:

LHS

$$= a_{3m+1}$$

$$= a + (3m + 1 - 1)d$$

$$= a + 3md$$

RHS

$$= 2a_{m+n+1}$$

$$= 2[a + (m + n + 1 - 1)d]$$

$$= 2[a + md - nd]$$

$$= 2[2md - nd]$$

$$\sqrt{3} = \frac{3600\sqrt{3}}{x}$$

$$\sqrt{3} = \frac{3000\sqrt{3}}{x}$$

$$x = 3600 \ m$$

Now, In right AED,

$$an 30^{\circ} = rac{ ext{DE}}{ ext{AE}} \ rac{1}{\sqrt{3}} = rac{3600\sqrt{3}}{3600+y}$$

$$3600 + y = 10800$$

$$y = 7200m$$

$$BD = CE$$

.: Distance covered in 30 seconds = 7200,

So, Speed =
$$\frac{7200}{30}=240 \mathrm{m/s}$$

=
$$240 imes rac{18}{5}$$

$$= 864 \ km/hr.$$

OR

Proof: Let AQ = x

$$\angle \mathrm{EBQ} = \beta$$
 [Given]

EB II QA

$$\Rightarrow \angle BQA = \beta$$
 [Alternate angles]

In right angled \triangle BAQ,

$$\frac{AB}{AQ} = \frac{b}{x} = \tan \beta$$

$$\Rightarrow \frac{b}{x} = \tan \beta \Rightarrow x = b \cot \beta$$
(i)

In right angled \triangle PQA,

$$\frac{PQ}{QA} = \frac{h}{x} = \tan \alpha$$

$$\Rightarrow h = x \tan \alpha = b \cot \beta \tan \alpha = b \tan \alpha \cot \beta$$

i.
$$PA .PB = (PN - AN)(PN + BN)$$

$$= (PN - AN) (PN + AN) \begin{bmatrix} :: ON \perp AB \\ :: N \text{ is the mid-point of } AB \\ \Rightarrow AN = BN \end{bmatrix}$$

$$= PN^2 - AN^2$$

ii. Applying Pythagoras theorem in right triangle PNO, we obtain

$$OP^2 = ON^2 + PN^2$$

$$\Rightarrow$$
PN² = OP² - ON²

$$PN^2 - AN^2 = (OP^2 - ON^2) - AN^2$$

$$= OP^2 - (ON^2 + AN^2)$$

= Op
2
 - OA 2 [Using Pythagoras theorem in ΔONA]

$$= OP^2 - OT^2 [:: OA = OT = radius]$$

$$PA.PB = PN^2 - AN^2$$
 and $PN^2 - AN^2 = OP^2 - OT^2$

$$\Rightarrow$$
 PA .PB = OP² - OT²

Applying Pythagoras theorem in $\triangle OTP$, we obtain

$$OP^2 = OT^2 + PT^2$$

$$\Rightarrow$$
 OP² - OT² = PT²

Thus, we obtain

$$PA.PB = OP^2 - OT^2$$

and
$$OP^2 - OT^2 = PT^2$$

Hence,
$$PA.PB = PT^2$$
.

10. The given equation is:

$$\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}$$

$$\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}$$
put
$$\frac{3x-4}{7} =$$
y, we obtain

$$y + \frac{1}{y} = \frac{5}{2}$$

$$\Rightarrow \frac{y^2 + 1}{y} = \frac{5}{2}$$

$$\Rightarrow 2x^2 + 3 = 5x$$

$$\Rightarrow$$
 2y² + 2 = 5y

$$\Rightarrow$$
 2y² - 5y + 2 = 0

By Factorisation we have:

$$2y^2 - 4y - y + 2 = 0$$

$$\Rightarrow$$
 2y(y - 2) - 1(y - 2) = 0

$$\Rightarrow$$
 (y-2)(2y-1)=0

$$\Rightarrow$$
 y - 2 = 0 or 2y - 1 = 0

Therefore, either y = 2 or y = $\frac{1}{2}$

Now,
$$y = \frac{3x-4}{7}$$

$$\Rightarrow \frac{3x-4}{7} = 2 \text{ or } \frac{3x-4}{7} = \frac{1}{2}$$

$$\Rightarrow$$
 3x - 4 = 14 or 6x - 8 = 7

$$\Rightarrow$$
 3x = 18 or 6x = 15

Therefore, x=6 or $\frac{5}{2}$

Section C

Steps of construction:

- 1. Draw a line segment AB = 6.5 cm
- 2. Draw a ray AX making an acute ∠BAX with AB
- 3. Along AX mark (4 + 7) = 11 points

such that
$$AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7 = A_7A_8 = A_8A_9 = A_9A_{10} = A_{10}A_{11}$$

- 4. Join A₁₁B.
- 5. Through the point A_4 , draw a line parallel to AB by making an angle equal to $\angle AA_{11}B$ at A_4 . Suppose this line meets AB at a point C.

The point C so obtained is the required point, which divides, AB in the ratio 4:7.

In order to draw the pair of tangents, we follow the following steps.

Steps of construction

STEP I Take a point O on the plane of the paper and draw a circle of radius OA = 5 cm.

STEP II Produce OA to B such that OA = AB = 5 cm.

STEP III Taking A as the centre draw a circle of radius AO = AB = 5 cm. Suppose it cuts the circle drawn in step I at P and Q.

STEP IV Join BP and BQ to get the desired tangents.

Justification: In OAP, we have

OA = OP = 5 cm (= Radius)

Also, AP = 5 cm (= Radius of circle with centre A)

 $\therefore \Delta OAP$ is equilateral. $\Rightarrow \angle PAO = 60^{\circ} \Rightarrow \angle BAP = 120^{\circ}$

In ΔBAP , we have

BA = AP and $\angle BAP$ = 120 $^{\circ}$

$$\angle ABP = \angle APB = 30^{\circ}$$

$$\Rightarrow$$
 $\angle PBQ = 60^{\circ}$

C.I.	f	c.f.
0 - 10	2	2
10 - 20	5	7
20 - 30	x	7 + x
30 - 40	12	19 + x
40 - 50	17	36 + x
50 - 60	20	56 + x
60 - 70	у	56 + x + y
70 - 80	9	65 + x + y
80 - 90	7	72 + x + y
90 - 100	4	76 + x + y
	$\Sigma f_i = 76 + x + y$	

As given, $\Sigma f_i = 100$

$$\Rightarrow$$
 76 + $x + y = 100$

$$\Rightarrow x + y = 24$$

Median =
$$52.5$$
, n = 100

$$\Rightarrow \frac{n}{2} = 50$$

Median Class is 50 - 60

Using formula for the median,

$$52.5 = 50 + \frac{[50 - (36 + x)]}{20} \times 10$$

$$= 50 + \frac{14-x}{2}$$

$$52.5 - 50 = \frac{14 - x}{2}$$

$$\Rightarrow$$
 2.5 $imes$ 2 = 14 - $imes$

$$\Rightarrow 5 = 14 - x$$

$$\Rightarrow x = 14 - 5$$

$$\Rightarrow x = 9$$

Putting in equation(i), we get 9+y=24

$$\Rightarrow y = 24 - 9 = 15$$

13. The above figure can be redrawn as shown below:

i. From the figure,

let
$$AB = h$$
 and $BC = x$

Ιη ΔΑΒC,

$$tan 60 = \frac{AB}{BC} = \frac{h}{x}$$

$$\sqrt{3} = \frac{h}{x}$$

$$h = \sqrt{3} x(i)$$

In ΔABD,

$$tan \ 30 = \frac{AB}{BD} = \frac{h}{r+20}$$

$$tan 30 = \frac{AB}{BD} = \frac{h}{x+20}$$

$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}x}{x+20}$$
 [using (i)]

$$x + 20 = 3x$$

$$x = 10m$$

- ii. Height of the building, h = $\sqrt{3}$ x = $10\sqrt{3}$ = 17.32 m
- 14. Let r = radius, h = cylindrical height

The radius of the hemisphere or cylinder, $r = \frac{5}{2}mm$

Height of cylinder, h = Total height - $2 \times$ radius of hemisphere

$$h=14-2 imes2.5=9~\mathrm{mm}$$

i. Surface area of cylinder $= 2\pi r h$

$$=2\pi\left(rac{5}{2}
ight)(9)=45\pi\,\mathrm{mm}^2$$

ii. Surface area of the capsule = curved surface area of cylinder + 2 imes surface area of the hemisphere

$$=2\pi rh+2(2\pi r^2)$$

$$=2\pi\left(rac{5}{2}
ight)\left(9
ight)+2\left[2\cdot\pi\cdot\left(rac{5}{2}
ight)^2
ight]$$

$$=45\pi+25\pi$$

$$=70\pi=70 imesrac{22}{7}=220~{
m mm}^2$$

